
Probabilistic Methods in Combinatorics

Solutions to Assignment 8

Problem 1. Let n be an integer. Show that, with probability 1 − o(1), in G(n, 1/2), all

vertices have degree in the range [n/2− 2
√
n log n, n/2 + 2

√
n log n].

Solution. Let G be sampled as G(n, 1/2). By union bound, it suffices to show that for

every vertex v ∈ V (G), we have with probability 1− o(n−1) that

deg(v) ∈ [n/2− 2
√

n log n, n/2 + 2
√
n log n].

It is easy to see that deg(v) has the distribution of a Binomial random variable of size n− 1

and probability p = 1/2. Therefore, by Chernoff (Corollary 5.2 of the lecture notes), we have

that

P
(∣∣∣deg(v)− n

2

∣∣∣ ≥ 2
√

n log n
)
≤ P

(∣∣∣∣deg(v)− n− 1

2

∣∣∣∣ ≥√n log n

)
≤ 2e−2(

√
n logn)2/(n−1)

≤ 2e−1.5 logn

= o(n−1).

Problem 2. You are presented with an n× n grid where each cell in the grid is either red

or blue. You can now do the following operation as many times as you like:

Select a row/column and switch the color of each cell in that row/column.

Your goal is to maximize the number of red cells in your grid. Prove that there exists an

initial configuration of the grid such that using the operation above arbitrarily many times

you cannot turn more than
1

2
+

√
ln 2

n
fraction of the cells red.

Solution. Colour each cell independently at random red or blue. We prove that with

positive probability there exists no sequence of operations that turn more than
1

2
+

√
ln 2

n
fraction of the cells red.

Observe that if we have a sequence of row and column operations, the outcome does not

depend on the order of the switches. Moreover, if we have a sequence of row and column

switches which involves switching some row (or column) R at least twice, that has the same

effect as the sequence of switches which omits two such switches of R. Hence, we may restrict
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our attention to those sequences of operations which switch every row and column at most

once.

The number of such sequences is precisely 22n since we are free to decide, for each row and

column whether we switch it or not (and the order does not matter).

Fix a sequence S of operations. What is the probability that after performing S, the resulting

grid has more than 1
2
+
√

ln 2
n

fraction of the cells red? Note that this has the same probability

as having more than
(

1
2
+
√

ln 2
n

)
n2 red cells in the original grid as the distributions of the

original grid and the new grid are the same. We can estimate the probability of this event

by the Chernoff bound. Indeed, if we view red cells as having value +1 and blue cells as

having value −1, then the probability of having more than
(

1
2
+
√

ln 2
n

)
n2 red cells is the

same as the probability of having
∑

1≤i≤n2 Xi > 2
√

ln 2
n

· n2 where X1, X2, . . . , Xn2 are i.i.d.

random variables taking values +1 and −1 with probability 1/2. By Chernoff’s inequality,

this probability is less than exp

(
− (2

√
ln 2
n

n2)2

2n2

)
.

Since

exp

−
(2
√

ln 2
n
n2)2

2n2

 = exp(−2(ln 2)n) = 2−2n,

the union bound implies that the probability that there exists some sequence of operations

which turns the original configuration into one with more than
(

1
2
+
√

ln 2
n

)
n2 red cells is

less than 1.

Problem 3. We say that a graphH is a subdivision of Kk (the complete graph on k vertices)

if H can be obtained from Kk by replacing each of its
(
k
2

)
edges by inner vertex-disjoint paths

(possibly of length 1). For example, the graph below is a subdivision of K4:

In 1961, György Hajós conjectured that for any k ∈ N any graph with chromatic number k

contains a subdivision of Kk. This conjecture was disproved by Catlin in 1979, who found

counterexamples for k ≥ 7. The goal of this exercise is to show that with probability 1−o(1)

the random graph G(n, 1/2) is a counterexample to Hajós’ conjecture.

(a) Show that with probability 1−o(1) the random graph G(n, 1/2) has chromatic number

at least n/(10 log2 n).
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(b) Show that with probability 1− o(1), for every set of m ≥ 100 lnn vertices, out of the(
m
2

)
possible edges at least 1

3

(
m
2

)
are missing.

(c) Use (b) to show that with probability 1 − o(1) the random graph G(n, 1/2) does not

contain a subdivision of Kk for k ≥ 10
√
n.

Solution.

(a) Let χ denote the chromatic number of G(n, 1/2) and let α denote the size of its largest

independence set. Since G(n, 1/2) admits a partition of its vertex set into χ many

independent sets, each of which of size at most α, it follows that χ ≥ n/α. Therefore,

it suffices to show that, w.h.p. (= with high probability, i.e. with probability 1− o(1)),

we have α ≤ 10 log2 n. Let S be a set of vertices of size l := ⌈10 log2 n⌉. We start by

estimating the probability that in G(n, 1/2) the set S is an independent set. Clearly

this probability is 2−(
l
2). Therefore, by the union bound, the probability that there

exists a set of vertices S of size l which is an independent set in G(n, 1/2) is at most

(
n

l

)
2−(

l
2) ≤

(en
l

)l
2−l(l−1)/2 =

( en

l · 2(l−1)/2

)l
=

(√
2en

l · 2l/2

)l

≤

( √
2en

10 log2 n · 25 log2 n

)l

=

( √
2e

10 log2 n · n4

)l

= o(1).

We conclude then that w.h.p. we have α < l in which case one has χ ≥ n/l ≥ n
10 log2 n

.

(b) Let S be a set of m ≥ 100 log n vertices. Let XS denote the number of edges of

G(n, 1/2) between vertices in S. Note thatXS is a random variable which is distributed

as Bin(
(
m
2

)
, 1/2). Therefore, by the Chernoff bounds:

P
[
XS >

2

3

(
m

2

)]
= P

[
XS − 1

2

(
m

2

)
>

1

6

(
m

2

)]
< e−2( 1

6)
2
(m2 ) = e−m(m−1)/36.

Note that in any graph, if S is a set of m vertices and T is a randomly chosen subset

of S with t vertices then

E[e(T )] =
∑

e∈E(S)

P[e ∈ E(T )] = e(S)

(
m−2
t−2

)(
m
t

) =
e(S)(
m
2

) ·
(
t

2

)
.

Therefore, if there is a set S of m ≥ 100 log n vertices which spans in G(n, 1/2) more

than 2
3

(
m
2

)
edges then there is also a subset T of exactly l := ⌈100 log n⌉ vertices which
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spans more than 2
3

(
l
2

)
many edges. Thus, by a union bound the probability that there

exists in G(n, 1/2) a set of m ≥ l vertices which spans more than 2
3

(
m
2

)
edges is at most

(
n

l

)
e−l(l−1)/36 ≤

(en
l
· e−(l−1)/36

)l
≤
(

en

100 log n
· e−2 logn

)l

=

(
e

100n log n

)l

= o(1).

This finishes the proof of (b).

(c) Assume that in all sets of k ≥ 10
√
n vertices, at least 1

3

(
k
2

)
of the possible

(
k
2

)
edges

are missing in G(n, 1/2). Note that by (b) this happens w.h.p. Suppose in this case

that G(n, 1/2) contains a subdivision of Kk, where k ≥ 10
√
n. We know that out of

all the possible
(
k
2

)
pairs of branch vertices of this subdivision of Kk (namely vertices

that would correspond to a Kk before replacing its edges) at least 1
3

(
k
2

)
are not edges

in G(n, 1/2). Therefore, between such pairs of branch vertices, we must have a path

of length at least 2. Moreover, all these paths are inner vertex-disjoint. Thus, we

conclude that this subdivison of Kk has at least k + 1
3

(
k
2

)
many vertices. However,

since k ≥ 10
√
n, this number is strictly larger than n, a contradiction. It follows that

w.h.p. G(n, 1/2) does not contains a subdivision of Kk.

Remark. Note that this shows that there are graphs with chromatic number at least n
10 log2 n

that do not contain a subdivision of K⌈10
√
n⌉. In particular, Hajós’ conjecture is very far from

being true.

Problem 4*. Prove that the following holds for all large enough n. Let S1, . . . , Sk be

subsets of [n] := {1, . . . , n}. If k ≤ 1.99 n
log2 n

then there are two distinct subsets X, Y of [n]

such that |X ∩ Si| = |Y ∩ Si| for every 1 ≤ i ≤ k.

Solution. As usual, we let X be a random subset of [n]. Let a =
√
n log n. Let i ≤ k. By

the Chernoff bound,

P
[∣∣∣∣|X ∩ Si| −

1

2
|Si|
∣∣∣∣ > a

]
≤ 2e−2a2/|Si| ≤ 2e−2a2/n = 2e−2 logn =

2

n2
.

Hence, by the union bound,

P
[∣∣∣∣|X ∩ Si| −

1

2
|Si|
∣∣∣∣ > a for some i ≤ k

]
≤ 2k

n2
≤ 1

2
. (1)

Let F be the family of sets X for which
∣∣|X ∩ Si| − 1

2
|Si|
∣∣ ≤ a for every i ≤ k. Then,

by (1), |F| ≥ 2n−1. For X ∈ F , let vX = (|X ∩ S1|, . . . , |X ∩ Sk|). Note that the set

{|X ∩ Si| : X ∈ F} consists of at most 2a + 1 values. It follows that the set {vX : X ∈ F}
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has size at most (2a+1)k. Thus, if (2a+1)k < 2n−1 then, by the pigeonhole principle, there

are two distinct sets X, Y ∈ F for which vX = vY , which means that |X ∩ Si| = |Y ∩ Si| for
every i ≤ k, as required. So let us prove the inequality (2a + 1)k < 2n−1. In fact, we shall

prove that (5a)k ≤ 2n. Since (2a+ 1)k < (5a)k/2, the desired inequality would follow. Note

that

(5a)k ≤ 2n ⇔ a ≤ 1

5
· 2n/k.

Now, we use the assumption that k ≤ 1.99 n
log2 n

to conclude that

1

5
· 2n/k ≥ 1

5
· 2log2 n/1.99 = 1

5
· n1/1.99 ≥ 1

5
· n0.502 ≥

√
n log n = a.
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