Probabilistic Methods in Combinatorics
Solutions to Assignment 8
Problem 1. Let n be an integer. Show that, with probability 1 — o(1), in G(n,1/2), all

vertices have degree in the range [n/2 — 2v/nlogn,n/2 + 2y/nlogn].

Solution. Let G' be sampled as G(n,1/2). By union bound, it suffices to show that for
every vertex v € V(G), we have with probability 1 — o(n™") that

deg(v) € [n/2 — 2¢/nlogn,n/2 + 2y/nlogn].

It is easy to see that deg(v) has the distribution of a Binomial random variable of size n — 1
and probability p = 1/2. Therefore, by Chernoff (Corollary 5.2 of the lecture notes), we have
that

P (|desv) - 2| > 2/mlogn) <IP’(

deg(v) — —' nlog n) < 2¢~Avnlogn)?/(n-1)
S 26—1.5logn

=o(n7 ).
Problem 2. You are presented with an n x n grid where each cell in the grid is either red
or blue. You can now do the following operation as many times as you like:

Select a row/column and switch the color of each cell in that row/column.

Your goal is to maximize the number of red cells in your grid. Prove that there exists an

initial configuration of the grid such that using the operation above arbitrarily many times

1 /In 2
you cannot turn more than 3 + 2 fraction of the cells red.
n

Solution.  Colour each cell independently at random red or blue. We prove that with
1 In2

positive probability there exists no sequence of operations that turn more than 3 +14/—
n

fraction of the cells red.

Observe that if we have a sequence of row and column operations, the outcome does not
depend on the order of the switches. Moreover, if we have a sequence of row and column
switches which involves switching some row (or column) R at least twice, that has the same

effect as the sequence of switches which omits two such switches of R. Hence, we may restrict

1



our attention to those sequences of operations which switch every row and column at most

once.

The number of such sequences is precisely 22" since we are free to decide, for each row and
column whether we switch it or not (and the order does not matter).

Fix a sequence S of operations. What is the probability that after performing S, the resulting
grid has more than %—i— \/ 1“—2 fraction of the cells red? Note that this has the same probability

as having more than <— + > n? red cells in the original grid as the distributions of the
original grid and the new grld are the same. We can estimate the probability of this event
by the Chernoff bound. Indeed, if we view red cells as having value +1 and blue cells as
having value —1, then the probability of having more than (% + \/E ) n? red cells is the

same as the probability of having ZKKHQ X; > 2,/ -n? where X;, X, ..., X, are i.i.d.
random variables taking values +1 and —1 with probablhty 1/2. By Chernoff’s inequality,

/2,22
this probability is less than exp (—M)

2n2

Since

(2 ln2 2)
exp | ———=—— | = exp(—2(In2)n) = 27",

2n2
the union bound implies that the probability that there exists some sequence of operations
which turns the original configuration into one with more than (% + w/ln ) n? red cells is
less than 1.

Problem 3. We say that a graph H is a subdivision of K}, (the complete graph on k vertices)
if H can be obtained from K, by replacing each of its ( ) edges by inner vertex-disjoint paths
(possibly of length 1). For example, the graph below is a subdivision of Kj:

In 1961, Gyorgy Hajos conjectured that for any k£ € N any graph with chromatic number &
contains a subdivision of Kj. This conjecture was disproved by Catlin in 1979, who found
counterexamples for k£ > 7. The goal of this exercise is to show that with probability 1 —o(1)

the random graph G(n,1/2) is a counterexample to Hajés’ conjecture.

(a) Show that with probability 1 —o(1) the random graph G(n, 1/2) has chromatic number
at least n/(10log, n).



(b)

(c)

Show that with probability 1 — o(1), for every set of m > 1001nn vertices, out of the

(g‘) possible edges at least %(ZL) are missing.

Use (b) to show that with probability 1 — o(1) the random graph G(n,1/2) does not
contain a subdivision of K}, for k& > 10y/n.

Solution.

(a)

Let x denote the chromatic number of G(n, 1/2) and let a denote the size of its largest
independence set. Since G(n,1/2) admits a partition of its vertex set into y many
independent sets, each of which of size at most «, it follows that x > n/«a. Therefore,
it suffices to show that, w.h.p. (= with high probability, i.e. with probability 1 —o(1)),
we have a < 10log, n. Let S be a set of vertices of size [ := [10log, n]. We start by
estimating the probability that in G(n,1/2) the set S is an independent set. Clearly
this probability is 9-(2). Therefore, by the union bound, the probability that there

exists a set of vertices S of size [ which is an independent set in G(n,1/2) is at most
!
Mo < () g - (o' (V2
l — N\ [.20-1)/2 [-21/2

l !
\/§en \/§€
< =|———1| =o0(1).
10logy m - 2510821 10logyn - n*

We conclude then that w.h.p. we have o < [ in which case one has x > n/l >

_n_
10logy n*

Let S be a set of m > 100logn vertices. Let Xg denote the number of edges of
G(n,1/2) between vertices in S. Note that Xg is a random variable which is distributed
as Bin(("}),1/2). Therefore, by the Chernoff bounds:

O R A R 0

Note that in any graph, if S is a set of m vertices and 7" is a randomly chosen subset

of S with t vertices then

e = 3 ple e by = e\t = (1),

ecE(S) (Tz?)

Therefore, if there is a set S of m > 100logn vertices which spans in G(n,1/2) more

than 2 (7)) edges then there is also a subset 1" of exactly I := [100logn] vertices which



spans more than %(é) many edges. Thus, by a union bound the probability that there

exists in G(n,1/2) a set of m > [ vertices which spans more than 2 (7)) edges is at most

! l
n e~ 10-1)/36 < (@ ) e—(l—l)/36>l < en Ce—2logn ) _ e — o(1).
l l 100 logn 100n logn

This finishes the proof of (b).

(c) Assume that in all sets of k& > 10y/n vertices, at least %(g) of the possible (g) edges
are missing in G(n,1/2). Note that by (b) this happens w.h.p. Suppose in this case
that G(n,1/2) contains a subdivision of K}, where k > 104/n. We know that out of

all the possible (];) pairs of branch vertices of this subdivision of K}, (namely vertices

k
2

in G(n,1/2). Therefore, between such pairs of branch vertices, we must have a path

that would correspond to a K}, before replacing its edges) at least %( ) are not edges

of length at least 2. Moreover, all these paths are inner vertex-disjoint. Thus, we
conclude that this subdivison of K} has at least k& + %(k

2
since k > 104/n, this number is strictly larger than n, a contradiction. It follows that

) many vertices. However,

w.h.p. G(n,1/2) does not contains a subdivision of Kj.

Remark. Note that this shows that there are graphs with chromatic number at least @

that do not contain a subdivision of K7y, /7). In particular, Hajos” conjecture is very far from

being true.

Problem 4%*. Prove that the following holds for all large enough n. Let Si,..., Sy be
subsets of [n] ;== {1,...,n}. If £ <1.99:-—"— then there are two distinct subsets X, Y of [n]

logyn

such that | X N.S;| =Y NS, for every 1 < i < k.

Solution. As usual, we let X be a random subset of [n]. Let a = y/nlogn. Let i < k. By
the Chernoff bound,

n?’

1
P H|Xﬂ5i| - §|Sz|

> a:| < 26—2a2/|51'| < 26—20,2/71 — 26—210gn _ =

Hence, by the union bound,

. 2k
> a for some 1 < k| < — <
n

: (1)

N —

1
P H|X NSl - 518

Let F be the family of sets X for which || X N S;| — 3|Si|| < a for every i < k. Then,
by (1), |F] > 2. For X € F, let vx = (| XNSi|,...,|X NSk]). Note that the set
{IXNS;| : X € F} consists of at most 2a + 1 values. It follows that the set {vyx : X € F}



has size at most (2a + 1)*. Thus, if (2a + 1)¥ < 277! then, by the pigeonhole principle, there
are two distinct sets X, Y € F for which vy = vy, which means that | X N S;| =Y N.S;| for
every i < k, as required. So let us prove the inequality (2a + 1)¥ < 2"~1. In fact, we shall
prove that (5a)* < 2". Since (2a + 1)* < (5a)*/2, the desired inequality would follow. Note
that

(Ga)f <2" o a< -2V

o] =

n

] to conclude that
Og2?’L

Now, we use the assumption that k£ < 1.99

1 1/1.99
5 n

1 . 2n/k > . 210g2n/1.99 _
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1952 >\ /nlogn = a.

O] =
O] =



